If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+7x-700=0
a = 4.9; b = 7; c = -700;
Δ = b2-4ac
Δ = 72-4·4.9·(-700)
Δ = 13769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13769}=\sqrt{1*13769}=\sqrt{1}*\sqrt{13769}=1\sqrt{13769}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1\sqrt{13769}}{2*4.9}=\frac{-7-1\sqrt{13769}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1\sqrt{13769}}{2*4.9}=\frac{-7+1\sqrt{13769}}{9.8} $
| 2(x+2)=3x+8-(x+4) | | (2/3)x+1=-(1/3)x-1 | | 9/10h=81 | | w/3-12=35 | | 1/2x+3x=24-4x | | (9x-5)+(7x-5)=22 | | 31=v/4+12 | | 50=2/3c | | (4x^2-15x+18)=0 | | 7(x-5)=-84 | | (X-1)^6+(x-1)^3+1=0 | | (3/2)x+x^2-22=0 | | 3/4p=21 | | 8/3c−2=2/3c−12 | | 49=7-5+1x | | -7(t-2)-(t+9)=4 | | 275+d+1091=12 | | 38c−2=32c−1 | | 2x^2+6x-81=0 | | 4-5v=v-8 | | m^2=148 | | 6=t/2 | | (1+2)÷3=x-5 | | 4x-1=2x+7x | | 6x+4-x=20-3x | | x+5/2=11 | | -2(4n+1)=8 | | ×-2=2x-4 | | 25/3=p/3 | | 15/3=8x+2(-8x) | | 5(x+2)=2(x+2)+3x | | 12x-14+10x=180 |